Pola Bilangan Matematika

Materi Pola bilangan yang merupakan sub bab dari materi barisan aritmatika untuk SMP disini kta akan membahas mengenai pola bilangan ganjil dan pola bilangan genap,

Apa itu pola bilangan ?
Pola ialah sebuah susunan yang mempunyai bentuk teratur, sedang bilangan itu sendiri ialah sesuatu yang digunakan untuk menunjukkan kuantitas ( banyak/sedikit ) dan ukuran ( ringan / berat / pendek / panjang / luas ). Bilangan ditunjukkan oleh suatu tanda atau lambang yang disebut angka teratur dari bentuk satu ke bentuk lainnya.

Dalam beberapa kasus kita temui seuah bilangan yang tersusun dari bilangan lain yang mempunyai pola tertentu, maka yg demikian disebut sebagai pola bilangan.

Pola Bilangan Genap dan Bilangan Ganjil

Pola Bilangan Genap

Salah satu himpunan dari bilangan asli adalah bilangan ganjil. apa itu bilangan ganjil ? Bilangan ganjil adalah bilangan asli yang tak habis jika dibagi dengan 2 atau kelipatannya.

Contoh soal :
Tentukanlah jumlah 7 bilangan asli ganjil yang pertama !

jawab :
ketujuh bilangan tersebut adalah : 1, 3, 5, 7, 9, 11, 13. jadi n=7
jumlah ke-7 bilangan tersebut adalah 72=49
untuk membuktikan silahkan dihitung manual 1+3+5+7+9+11+13=...?

Contoh 2 pola bilangan
Berapakah banya bilangan asli ganjil yang jumlahnya 81 ?

jawab :
Kita telah mengetahui bahwa jumlah bilangan asli ganjil yaitu banyaknya bilangan asli ganjil dikuadratkan secara sederhana dapat kita tuliskan n2 dari pertanyaan diatas dapat kita simpulkan bahwa
n2=81, maka
n = √81
n = 9, jadi banyaknya bilangan ganjil adalah 9.

Pola Bilangan Genap

 Selain bilangan ganjil, bilangan genap juga termasuk anggota dari bilangan asli yaitu {2, 4, 6, 8, ...}

Perhatikan susunan heksagonal seperti pada gambar berikut :

pola bilangan matematika - pola heksagonal

Gambar diatas menunjukkan bahwa heksagonal yang terdiri sebanyak bilangan genap dapat disusun membentuk pola tertentu. sehingga gambar diatas bisa disebut sebagai pola bilangan genap.

Untuk lebih memahami perhatikan uraian penjumlahan bilangan asli genap berikut :

Penjumlahan dari 2 bilangan genap :
2 + 4 = 6, n=2 dapat ditulis 6 = 2 (2+1)
penjumlahan 3 bilangan genap :
2 + 4 + 6 = 12, n=3 dapat ditulis 12 = 3 ( 3+1)
penjulahan 4 bilangan genap :
2 + 4 + 6 + 8 = 20, n=4 dapat ditulis 20 = 4 (4+1)

dari pola di atas seharusnya anda sudah dapat menarik kesimpulan rumus jumlah pola bilangan genap, ya benar rumusnya adalah ns = n ( n + 1 )

Untuk mengaplikasikan rumus tersebut silahkan kalian kerjaan soal berikut :

  • Tentukan jumlah 10 bilangan asli pertama !
  • Tentukan jumlah 8 bilangan asli pertama !
Demikian materi pola bilangan matematika sub pokok bahasan dari barisan aritmatika, semoga dapat dipahami dengan baik. selamat belajar!!!
Poskan Komentar
 

Tanya Kami

Pelajari Juga