Langsung ke konten utama

3 Metode Penentuan Akar Persamaan Kuadrat

Sebelum belajar mencari persamaan akar kuadrat, silahkan baca post sebelumnya mengenai akar kuadrat agar kalian paham betul mengenai konsep akar kuadrat. soal-soal persamaan kuadrat dapat diselesaikan dengan 3 cara, berikut penjelasannya :

Mencari akar persamaan kuadrat dengan cara pemfaktoran

Penyelesaian akar persamaan kuadrat dengan cara pemfaktoran akan sangat membantu jika kita mendapati soal-soal yang cukup sulit, artinya faktor akar-akar kuadrat tersebut tidak bisa diselesaikan dengan cara awang-awang ( menerka faktor dari bilangan ),

 Contoh 1 akar persamaan kuadrat cara pemfaktoran


2x2-25×-63 = 0 —> (Susah dikira-kira tapi susah)
Cari 2 angka yang jika ditambahkan nilainya sama dengan b dan dikalikan   nilainya = a.c
Dari soal tersebut didapat bahwa a = 2, b = -25 dan c = -63

Nilai axc = 126, faktorkan 126 untuk mencari 2 bilangan yang jika ditambahkan hasilnya = b

Faktor dari 126 yaitu 1,2,3,7,9,18,63 ambil 2 angka dari faktor tersebut yang dijumlahkan nilainya -25, didapat nilai -7 dan -18


2x2-25×-63 = 0
2x2-18x-7×-63 = 0
2x(x-9)-7(x-9) = 0 (pakai aturan asosiasi, semoga paham)
(2×-7) (x-9) = 0 (selesai) mudah bukan :D2x2-25×-63 = 0
x2-18x-7×-63 = 0
2x(x-9)-7(x-9) = 0 (pakai aturan asosiasi, semoga paham)(2×-7) (x-9) = 0 (selesai)

Contoh 2 akar persamaan kuadrat cara pemfaktoran

contoh yang ke-2 ini persamaan akar kuadratnya lebih sederhana jadi dapat kalian selesaikan dengan cara awang-awang seperti yang admin katakan tadi :v
contoh akar persamaan kuadrat













2 contoh diatas merupakan persoalan akar persamaan kuadrat dengan 3 suku ( ax2+ bx + c ) bagaimana jika akar persamaaan kuadratnya hanya dua suku misal ( ax2 + bx  ) atau ( ax2 + c , berikut cara penyelesaiannya














Soal latihan akar persamaan kuadrat
  1.  x2 – 10 x = – 21
  2. x2 + 4x –12 = 0
  3. 3x2 – x – 2 = 0
  4. x2 + 7 x + 12 = 0
  5. x2 + 8 x = –15

Mencari Akar Persamaan Kuadrat dengan Cara Rumus ABC

Tidak semua persoalan akar persamaan kusdrat dapat kita selesaikan dengan cara pemfaktoran, dan kalo mungkin bisa membutuhkan waktu yang lebih lama untuk menemukan jawabannya, tapi tenang saja masih ada rumus persamaan kuadrat yang sering di sebut sebagai rumus ABC sebagai solusi pemecah masalah tersebut.

Rumus ABC
rumus persamaan kuadrat




lihat tanda ± dalam rumus tersebut, tanda tersebut menunjukkan adanya dua kemungkinan yang dapat dihasilkan yaitu antara x1 dan x2
x1 = (-b ± √[b2 - 4ac]) / 2a
x2 = (-b ± √[b2 - 4ac]) / 2a
 Contoh Soal
x2– 8x +9 = 0
x = (-b ± √[b2 - 4ac]) / 2a
x = (8 ± √[64 - 4·1·(9)]) / 2·1
= (8 ± √[64 -36]) / 2
= (4 ± √28) / 2
= (4 ±
2√7) / 2
=
(2 ± √7)
x1 = (2 + √7)
x1 = (2 – √7

Mencari Akar Persamaan Kuadrat dengan Cara Melengkapi Kuadrat Sempurna

Cara yang satu ini lebih sederhana, hanya dengan melakukan sedikit manipulasi dalam menemukan akar-akar persamaan kuadrat untuk lebih jelasnya kita akan menggunakan contoh soal diatas yang sudah diselesaikan dengan rumus ABC agar kalian dapat membandingkan cara yang ketiga dengan cara yang ke-2 tadi, yuk simak baik-baik :


melengkapi kuadrat sempurna
















Jiks kalian dapat memahami prinsip-prinsip dalam penyelesaian persoalan persamaan kuadrat nantinya jika kalian menemukan soal yang lebih sulit admin yakin dapat kalian selesaikan dengan baik. 

selamat belajar matematika !!

Postingan populer dari blog ini

KUMPULAN SOAL LATIHAN UN MATEMATIKA SMA PER-BAB

KUMPULAN SOAL LATIHAN UN (UJIAN )NASIONAL) SMA IPA PER-BAB: soal-soal latihan un ini disusun berdasarkan indikator soal ujian nasional, semoga dengan latihan-latihan soal un matematika ini dapat membantu anda dalam menghadapi ujian nasional nantinya. Berikut daftar download soal-soal latihan un matematika: 1. Soal-soal latihan un matematika BAB Pangkat, Akar, dan Logaritma ( Download ) 2. Soal-soal latihan un matematika BAB Fungsi Kuadrat ( Download ) 3. Soal-soal latihan un matematika BAB Sistem Persamaan Linier ( Download ) 4. Soal-soal latihan un matematika BAB Trigonometri 1( Download ) 5. Soal-soal latihan un matematika BAB Trigonometri 2 ( Download ) 6. Soal-soal latihan un matematika BAB Logika Matematika ( Download ) 7. Soal-soal latihan un matematika BAB Dimensi Tiga ( Download ) 8. Soal-soal latihan un matematika BAB Statistika ( Download ) 9. Soal-soal latihan un matematika BAB Peluang ( Download ) 10. Soal-soal latihan un matematika BAB Lingkaran ( Download ) 1

Tabel dan Cara Belajar Perkalian 1 sampai 10

Perkalian 1 sampai 10 waktu jaman saya sekolah dulu diajarkan pada saat masih duduk dibangku Sekolah Dasar ( SD ) menurut asumsi admin perkalian 1 sampai 10 memang harus dikusai anak-anak sd agar kedepannya anak-anak bisa mencerna dengan mudah materi matematika yang akan diajarkan selanjutnya. Pada saat menginjak kelas 4 anak harus menguasai perkalian 6 - 10 diluar kepala, maksudnya ketika anak di tanya perkalian antara 6 kali 7 tidak harus berfikir lama untuk menjawabnya, seingat admin waktu itu diajar oleh guru dengan perkalian jarimatika dan itu sangat membantu sekali dalam pemahaman dan kecepatan menjawab soal-soal perkalian. Tabel perkalian 1 sampai 10 Sebelum admin berbagi cara belajar perkalian 1 sampai 10 ada baikknya admin membagi tabel perkalian 1 sampai 10 guna penalaran singkat dan juga bisa di gunakan pencocokan hasil perkalian yang di hitung oleh anak-anak, akan tetapi diusahakan anak-anak tidak ketergantungan untuk selalu menggunakan tabel perkalian berikut untuk

Tangga KM, km → hm → dam → m → dm → cm → mm

Belajar tangga KM satuan panjang, yup kali ini kita akan belajar mengenai satuan panjang bagaimana cara mengubah satuan panjang kilometer ke meter atau sebaliknya bagaimana cara mengubah satuan meter ke kilo meter. Artikel sebelumnya ' Tangga Konversi Satuan  ' sudah admin jelaskan secara singkat mengenai tangga konversi dari satuan panjang, massa, luas dan volum tapi untuk kali ini kita akan bahas mengenai satuan panjang saja disertai dengan contoh soal biar kalian bisa lebih memahami. Tangga KM Konversi Satuan Panjang Konversi satuan ? konversi satuan bisa kita artikan sebagai 'mengubah nilai suatu sistem ke nilai satuan lain' misalnya jika jarak A ke B di ketahui 1 KM kemudian kita akan mengubahnya kesatuan meter ( m ) maka jarak A ke B tidak akan berubah nilainya baik bertambah maupun berkurang. Kenapa kita harus mengubah satuan panjang ? biasanya proses mengubah satuan panjang ke satuan panjang lainnya di perlukan untuk memudahkan kita dalam penghitung