Langsung ke konten utama

Pengertian dan Contoh Bilangan Prima

Kemarin ada yang tanya contoh bilangan prima, setelah tak cari di blog saya ternyata memang belum ada jadi sekalian saja tak buatin artikelnya mengenai pengertian bilangan prima dan contoh bilangan prima.

Pengertian Bilangan Prima

Dalam ilmu matematika bilangan prima diartikan sebagai bilangan asli yang lebih dari satu tapi yang hanya bisa dibagi dengan 1 dan bilangan itu sendiri. Bingung ? lihat pengertian dibawah lebih singkat jelas dan padat :)


Bilangan prima adalah bilangan asli yang hanya mempunyai 2 faktor, yaitu 1 dan bilangan itu sendiri. 

Anggota bilangan prima ada tak terhingga banyaknya. kebalikan dari bilangan prima yaitu bilangan komposit kalo bilangan komposit artinya bilangan yang mempunyai faktor lebih dari 2. tapi gak akan admin bahas kelanjutannya mengenai bilangan satu ini :)

Apakah 7 bilangan prima ?
apakah 7 habis di bagi 1 ( ya )
apakah 7 habis di bagi 2 ( tidak )
apakah 7 habis di bagi 3 ( tidak )
apakah 7 habis di bagi 4 ( tidak )
apakah 7 habis di bagi 5 ( tidak )
apakah 7 habis di bagi  6 ( tidak )
apakah 7 habis di bagi 7 ( ya )
faktor dari 7 hanya 2 yaitu 1 dan 7 ( bilangan itu sendiri ) jadi 7 adalah bilangan prima.

Apakah 8 bilangan prima ?
apakah 8 habis di bagi 1 ( ya )
apakah 8 habis di bagi 2 ( ya )
apakah 8 habis di bagi 3 ( tidak )
apakah 8 habis di bagi 4 ( ya )
apakah 8 habis di bagi 5 ( tidak )
apakah 8 habis di bagi  6 ( tidak )
apakah 8 habis di bagi 7 ( tidak )
apakah 8 habis di bagi 8 ( ya )
faktor dari 8 lebih dari 2 yaitu : 1, 2, 4, 8 maka 8 bukan anggota dari bilangan prima.

Anggota dari bilangan prima hapir kesemuanya ganjil kecuali "2"tapi tidak semua bilangan ganjil selalu termasuk dalam anggota bilangan prima. nah ini yang perlu kalian garis bawahi satu-satunya anggota bilangan prima yang genap adalah angka 2.

Tabel Bilangan Prima

contoh bilangan prima
tabel bilangan prima
Lihat tabel angka disamping angka yang dilingkari itu merupakan anggota bilangan prima silahkan kalian coba angka tersebut barang kali masih ada angka yang mempunyai faktor lebih dari 2 silahkan hubungi admin :)










Contoh Soal Bilangan Prima

Tentukan semua bilangan prima n sehinggan 3n - 4, 4n - 5 dan 5n - 3 merupakan bilangan prima ?
Jawaban :
kita tidak perlu mencari satu-satu nilai n yang memenuhi syarat tersebut.
Sekarang coba kita jumlahkan ketiga bilangan tersebut, yaitu  
3n - 4 + 4n - 5 dan + 5n - 3 = 12n - 12 = 2( 6n - 6 ) (berapapun nilai n nya jika dikalikan 2 maka hsilnya akan genap )

Karena jumlah ke-3 bilangan tersebut genap , maka bisa dipastikan bahwa salah satu dari ke-3 bilangan tersebut pasti genap. Tadi sudah dibahas diatas bahwa bilangan prima genap hanya satu yaitu 2 , salah satu dari ke-3 bilangan tersebut sama dengan 2, dimana yang dapat memenuhi hanya 3n - 4 = 2, sehingga n yang memenuhi hanya n = 2.

Soal Latihan:
  1. Bilangan ganjil 4-angka terbesar yang hasil penjumlahan semua angkanya bilangan prima adalah …. (Soal OSP SMA 2007)
  2. Diketahui p adalah bilangan prima sehingga persamaan 7p = 8x^2 - 1 dan p^2 = 2y^2 - 1 mempunyai solusi x dan y berupa bilangan bulat. Tentukan semua nilai p yang memenuhi. (Soal OSP SMA 2007 bagian essay)
  3. Nilai dari \sum_{k=1}^{2009}FPB(k,7) = …. (Soal OSK SMA 2009)

Demikian artikel kali ini mengenai pengertian bilangan prima dan contoh bilangan prima, semoga bermanfaat.
Selamat belajar.

Postingan populer dari blog ini

KUMPULAN SOAL LATIHAN UN MATEMATIKA SMA PER-BAB

KUMPULAN SOAL LATIHAN UN (UJIAN )NASIONAL) SMA IPA PER-BAB: soal-soal latihan un ini disusun berdasarkan indikator soal ujian nasional, semoga dengan latihan-latihan soal un matematika ini dapat membantu anda dalam menghadapi ujian nasional nantinya. Berikut daftar download soal-soal latihan un matematika: 1. Soal-soal latihan un matematika BAB Pangkat, Akar, dan Logaritma ( Download ) 2. Soal-soal latihan un matematika BAB Fungsi Kuadrat ( Download ) 3. Soal-soal latihan un matematika BAB Sistem Persamaan Linier ( Download ) 4. Soal-soal latihan un matematika BAB Trigonometri 1( Download ) 5. Soal-soal latihan un matematika BAB Trigonometri 2 ( Download ) 6. Soal-soal latihan un matematika BAB Logika Matematika ( Download ) 7. Soal-soal latihan un matematika BAB Dimensi Tiga ( Download ) 8. Soal-soal latihan un matematika BAB Statistika ( Download ) 9. Soal-soal latihan un matematika BAB Peluang ( Download ) 10. Soal-soal latihan un matematika BAB Lingkaran ( Download ) 1

Tabel dan Cara Belajar Perkalian 1 sampai 10

Perkalian 1 sampai 10 waktu jaman saya sekolah dulu diajarkan pada saat masih duduk dibangku Sekolah Dasar ( SD ) menurut asumsi admin perkalian 1 sampai 10 memang harus dikusai anak-anak sd agar kedepannya anak-anak bisa mencerna dengan mudah materi matematika yang akan diajarkan selanjutnya. Pada saat menginjak kelas 4 anak harus menguasai perkalian 6 - 10 diluar kepala, maksudnya ketika anak di tanya perkalian antara 6 kali 7 tidak harus berfikir lama untuk menjawabnya, seingat admin waktu itu diajar oleh guru dengan perkalian jarimatika dan itu sangat membantu sekali dalam pemahaman dan kecepatan menjawab soal-soal perkalian. Tabel perkalian 1 sampai 10 Sebelum admin berbagi cara belajar perkalian 1 sampai 10 ada baikknya admin membagi tabel perkalian 1 sampai 10 guna penalaran singkat dan juga bisa di gunakan pencocokan hasil perkalian yang di hitung oleh anak-anak, akan tetapi diusahakan anak-anak tidak ketergantungan untuk selalu menggunakan tabel perkalian berikut untuk

Tangga KM, km → hm → dam → m → dm → cm → mm

Belajar tangga KM satuan panjang, yup kali ini kita akan belajar mengenai satuan panjang bagaimana cara mengubah satuan panjang kilometer ke meter atau sebaliknya bagaimana cara mengubah satuan meter ke kilo meter. Artikel sebelumnya ' Tangga Konversi Satuan  ' sudah admin jelaskan secara singkat mengenai tangga konversi dari satuan panjang, massa, luas dan volum tapi untuk kali ini kita akan bahas mengenai satuan panjang saja disertai dengan contoh soal biar kalian bisa lebih memahami. Tangga KM Konversi Satuan Panjang Konversi satuan ? konversi satuan bisa kita artikan sebagai 'mengubah nilai suatu sistem ke nilai satuan lain' misalnya jika jarak A ke B di ketahui 1 KM kemudian kita akan mengubahnya kesatuan meter ( m ) maka jarak A ke B tidak akan berubah nilainya baik bertambah maupun berkurang. Kenapa kita harus mengubah satuan panjang ? biasanya proses mengubah satuan panjang ke satuan panjang lainnya di perlukan untuk memudahkan kita dalam penghitung